

Mathematics Extension 1

YEAR 12 TRIAL EXAMINATION 2008

Time allowed: Reading time – 5 minutes
Working time - 2 hours

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- Write using blue or black pen.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- Each question is to be started on a new page and you are to write your name and teacher's name on each page.
- The marks allocated for each question are indicated

me :		·		Class Teacher:					
Q		1	2	3	4	5	6	7	Total
Mar	k	/12	/12	/12	/12	/12	/12	/12	/84

BLANK PAGE

Attempt Questions 1-7. All questions are of equal value.

Start each question on a new page. Extra writing paper is available.

Question 1 (12 marks) Start a new page				
(a)	Find \int	$\frac{1}{x^2+3} dx$	2	
(b)	Ten pe	ople sit around a round table. How many arrangements are possible particular people want to sit together?	2	
(c)	(c) Find to the nearest degree the size of the acute angle between the lines			
		x + 2y - 1 = 0 x - 2y + 4 = 0		
(d)	If	$y = \frac{3x+5}{x-4}$	2	
	Express	s the inverse function as a function of x		
(e)	For the	points A (-5, 2) and B(2, 0)		
	(i)	Write down the coordinates of P, the point that divides AB internally in the ratio k:1	2	
	(ii)	If P lies on $xy=1$, show that $k^2-2k+11=0$	2	

A departure a (15 marks) Diffic a most Diffic	Question 2	(12 marks) Start a nev	v page
---	------------	-----------	---------------	--------

Marks

(a) Given that a root of the equation $e^x + e^{-x} - 3 = 0$ is close to 1, use one application of Newton's Method of Approximation to find a second approximation to this root (correct to 2 decimal places)

2

(b) Prove by Mathematical induction that $2^{2n+1}+1$ is divisible by 3 for all non-negative integral values of n.

3

(c) (i) Express $\sin x - \cos x$ in the form $A \sin(x - \alpha)$, with A > 0 and $0 < \alpha < \frac{\pi}{2}$

2

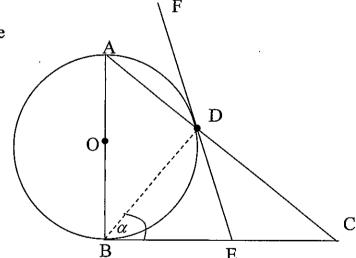
(ii) Hence or otherwise determine

 $\lim_{x \to \frac{\pi}{4}} \left(\frac{\sin x - \cos x}{x - \frac{\pi}{4}} \right)$

1

(d)

Not to scale



In the diagram, AB is a diameter of the circle, centre O, and BC is tangential to the circle at B. The line ADC intersects the circle at D. The tangent to the circle at D intersects BC at E. Let $\angle EBD = \alpha$

- (i) Copy the diagram onto your page
- (ii) Prove that $\angle EDC = \frac{\pi}{2} \alpha$

4

Question 3 (12 marks) Start a new page

(a) Consider the function $f(x) = \cos^{-1} x$ (i) Sketch the graph of y = f(x), stating clearly its range and domain.

3

(ii) Find the volume of the solid formed by rotating the arc of the curve $y = \cos^{-1} x$ that is in the positive quadrant about the y axis.

(b) Evaluate $\int_{0}^{\frac{\pi}{2}} [(3\sin x) - 1]^{2} \cos x \, dx$ using the substitution $u = (3\sin x) - 1$

- (c) (i) If $t = \tan \frac{\theta}{2}$, write down expressions for $\sin \theta$ and $\cos \theta$ in terms of t
 - (ii) Hence or otherwise solve the equation $\sqrt{3} \sin \theta = 1 + \cos \theta \quad \text{in the domain } 0 \le \theta \le 2\pi$

Question 4 (12 marks) Start a new page

Marks

(a)

(i) Show that the derivative of $x \tan x - \ln(\cos x)^{-1}$ is $x \sec^2 x$

2

(ii) Hence or otherwise evaluate $\int_{0}^{\frac{\pi}{4}} x \sec^{2} x \, dx$

2

- (b) A team of 6 girls is to be chosen from 10 girls.
 - (i) Find the number of ways that two particular girls, A and B, are both included.

1

(ii) Find the number of ways that A and B are both excluded.

1

(iii). Find the probability that either A is included or B is included, but A and B are not included together.

2

(c) A particle is released from rest at the origin on a straight line, when x metres from the origin, its acceleration is given by

$$\frac{18}{(x-4)^2}$$
 m/s², for x < 4.

(i) In which direction will the particle first move?

1

(ii) Find the particle's velocity when it reaches x = 2

3

Question 5 (12 marks) Start a new page

Marks

(a) A particle moves along in a straight line such that its displacement x metres from an origin O at time t seconds is given by:

$$x = 4 \sin \frac{\pi}{2} t$$

(i) Show that this motion is simple harmonic motion.

3

(ii) State the amplitude and the period of this motion.

2

(iii) Calculate the maximum speed attained by the particle.

3

(b)

Use long division to divide the polynomial $f(x)=x^4-x^3+x^2-x+1$ by the polynomial $g(x)=x^2-3$.

2

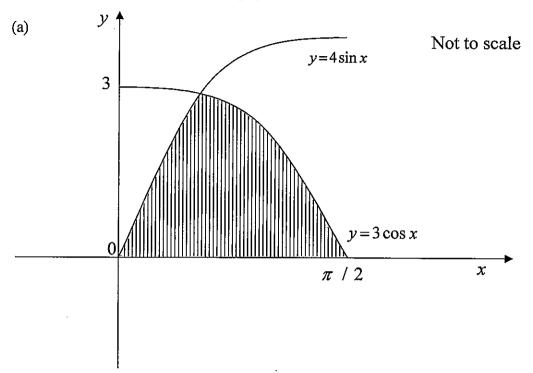
Express your answer in the form $f(x) = g(x) \cdot q(x) + r(x)$

2

(c) Differentiate $\cos^{-1} (e^{-x})$ with respect to x, putting your answer in simplest form.

Question 6 (12 marks) Start a new page

Marks



The diagram shows the graphs of $y = 4 \sin x$ and $y = 3 \cos x$. Show that the area of the shaded region in the diagram is 2 units^2 .

(b) A particle projected from ground level at an angle θ to the horizontal has its position at time t given by the coordinates

$$x = Vt\cos\theta$$
, $y = Vt\sin\theta - \frac{1}{2}gt^2$ (DO NOT PROVE THESE)

- (i) Using these equations, find the maximum height reached in terms of V, g and θ .
- (ii) What is the speed of the object at its maximum height?

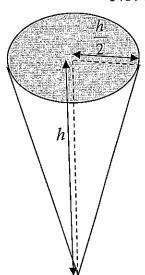
1

2

3

Question 6 continues on page 9

Not to scale



A cone has a depth of h and radius of $\frac{h}{2}$, as shown.

(i) Show that the volume of the cone is given by $V = \frac{1}{12} \pi h^3$

(ii) Water is poured in at a rate of $10 \, mm^3 / s$. Find the rate at which the depth, $h \, mm$, is increasing when the depth of water in the cone is $50 \, mm$.

The cone is filled to a depth of 100mm and pouring then stops. A hole is then opened at the vertex of the cone and water flows out at a rate of $\pi h^2 mm^3 / s$

(iii) Find $\frac{dh}{dt}$ in mm/s

(iv) Hence find how long it takes to empty the cone.

2

1

1

End of Question 6

1

(a) The mass, M, of a radioactive element decreases at a rate proportional to the mass,

ie.
$$\frac{dM}{dt} = -kM$$
 where k is a constant.

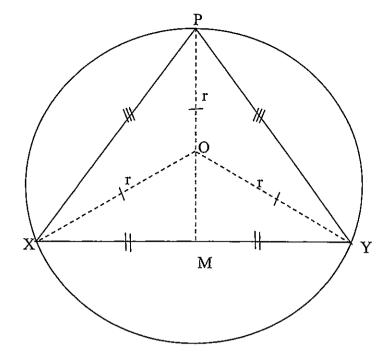
- (i) Show that the function $M = M_0 e^{-kt}$, where M_0 is the initial mass, provides such a rate.
- (ii) The "half-life" period of an element is the time taken for any given mass to be reduced by half. If the half-life period is T,

 prove that $k = \frac{\ln 2}{T}$

(b)

Marks

Not to scale



In the diagram above, O is the centre of a circle of constant radius r. A variable chord XY subtends an angle 2θ at the centre O. Let P be the point on the major arc XY so that ΔXPY is isosceles with XP = YP. Let PO produced meet XY at M so that PM is the perpendicular bisector of the chord XY.

(i) Prove that the area, A, of $\triangle XPY$ is given by:

3

$$A = r^2 \sin\theta (1 + \cos\theta)$$

(ii) Show that
$$\frac{dA}{d\theta} = r^2 (2\cos^2 \theta + \cos \theta - 1)$$

2

(iii) Show that ΔXPY has maximum area when it is an equilateral triangle. You may assume it is a maximum – you are NOT

3

required to test
$$\frac{d^2A}{d\theta^2}$$

End of paper

Standard Integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

(a) $\int_{\chi^2+3}^{\frac{1}{2}} dx = \int_{\chi^2+(\sqrt{3})^2}^{\frac{1}{2}}$

(b) (xxx), 7, x3 = 30240

(c) x+2y-1=0: m,=-1. 3x - 2y + 4=0 : m2 = 3

(d) f: y= 311+1

= \frac{1}{12} \tau \frac{1}{1

scy - 416 = 34+5. -471-5 = 34-14 - Lpc-1 = y (3-10) y = 411+5

ip of (12) = 1/14/

(e) A (-1,2) B(2,0)

(11) sig=1=) 2k-1 x 12+1=1 a h-10= (h+1) 1 0 = h-12h+11 Question 2

(a) $y = e^{y} + e^{-y} - 3$ y=ex-ex.

is divisible by 3 assure: 2" +1 = 3 P, where P

= 4 (3P-1) +1, by anumption.

=121-4+1

=12P-3 = 3 (48-1)

is divisible by 3,

". 2 +1 is divisible by 3 by mathematical induction

(c) (i)

het sin 16- LOTE = A sin (26-d)

= Asinx cord -

ril= A cord and 1= A sind

1 = tand A = 1 - 5 in 4

= lim 1/2 sin (12 4)

(11) BE = ED (equal transporter to)

O From E)

: BDE = X. BDA = 2 (L in semi O) · BDE= = (aljoupp Ls).

: EDc = = -d (adj compl.

Question 3.

a)
$$|GO| = \cos^{-1} x$$
.

b) Let $u = 3 \sin x - 1$
 $dx = 3 \cos x$.

 $du = 1 \cos x$.

 $du =$

(i)
$$\sin \theta = \frac{2t}{1+t^2}$$

$$\cos \theta = \frac{-t^2}{1+t^2}$$
(i)
$$\sqrt{3} \sin \theta = 1 + \cos \theta - 1$$

$$\sqrt{3} \times \frac{2t}{1+t^2} = 1 + \frac{1-t^2}{1+t^2}$$

$$\frac{2\sqrt{3}t}{1+t^2} = \frac{1+t^2+1-t^2}{1+t^2}$$

$$\frac{2}{1+t^2} = \frac{1}{1+t^2}$$

$$\frac{2}$$

(b) (1)
$$\frac{8}{6} = \frac{2}{2} = \frac{8}{160}$$

(11) $\frac{8}{6} = \frac{2}{3} = \frac{8}{160}$

(11) $\frac{8}{6} = \frac{1}{2} =$

(1)
$$1c = \frac{4\pi}{2} \cos \frac{\pi}{2} t$$

 $ic = \frac{-4\pi^2}{4} \sin \frac{\pi}{2} t$
 $= -\frac{\pi^2}{4} \times 10^{-10}$

$$\Rightarrow$$
 SHM, $n = \frac{\pi}{2}$.

(11) amplitude = 4

period =
$$\frac{2\pi}{\pi/2}$$

(b) (1)
$$2 - x + 4$$

 $x^{2} + 0x - 3$ $x^{2} - x^{3} + x^{2} - x + 4$
 $x^{4} + 0x^{2} - 2x^{2}$
 $-x^{3} + 4x^{2} - x$
 $-x^{3} + 6x^{2} + 3x$
 $4x^{2} - 4x + 1$
 $4x^{2} + 0x - 12$
 $-4x + 13$

$$(c)\frac{d}{dx}$$
 $\cos^{-1}(e^{-x})$

$$= e^{2i\zeta}\sqrt{|-e^{-2i\zeta}|}$$

$$= e^{\chi} \sqrt{1 - e^{-2\chi}}$$

$$= e^{\frac{1}{2}} \sqrt{\frac{e^{2x}-1}{e^{2x}}}$$

$$=\frac{1}{\sqrt{e^{2\kappa}-1}}$$

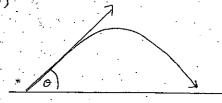
Question 6

a) AtPut of int:

$$4 \sin x = 3 \cos x$$

$$\tan x = \frac{3}{4}$$

$$= -4\left[\cos\theta - \cos\phi\right] + 3\left[\sin\frac{\pi}{2} - \sin\theta\right]$$



oc = Vt cos o het x = 0-at put of y=Vt sino- L7 - intersection (1) have height when y=0 y = Vino-gt

when
$$t = \frac{V \sin \theta}{g}$$

then $y = V \sin \theta \times \frac{V \sin \theta}{g} - \frac{g}{2} \times \frac{V^2 \sin^2 \theta}{g^2}$
 $= V^2 \sin^2 \theta$

$$=-4\left[\frac{4}{5}-1\right]+3\left[1-\frac{2}{5}\right]$$
 (11) $i=V\cos\theta$ at max leight

$$V = \frac{1}{3} \Re R^{2}H$$

$$= \frac{1}{3} \Re \left(\frac{H}{2}\right)^{2} \times H$$

$$= \frac{1}{3} \Re R^{2}H$$

1)
$$\frac{dV}{dt} = 10$$

 $\frac{dh}{dt} = ?$ when $h = 50$.
 $\frac{dh}{dt} = \frac{dh}{dt} \times \frac{dV}{dt}$.

$$\frac{dV}{dh} = \frac{2}{12} \pi h^{2}$$

$$= \frac{1}{12} \pi h^{2}$$

$$\frac{dh}{dt} = \frac{1}{21} h^{2} \times 10$$

$$\frac{dh}{dt} = -\pi h^{2}$$

$$\frac{dh}{dt} = \frac{4}{\pi h^{2}} \times (-\pi h^{2})$$

(iv) When
$$h=0$$
; $t=?$

$$h=100 \text{ when } t=0$$

$$\frac{dt}{dh}=-\frac{1}{4}$$

$$t=-\frac{1}{4}$$

Sub
$$t=0$$
, $h=100$
 $0=-25+c$
 $c=25$
 $c=-t_1h+15$

$$2) \frac{dM}{dt} = -kM$$

i)
$$M = M_0 e^{-kt}$$

$$\frac{dM}{dt} = -kM_0 e^{-kt}$$

$$\frac{1}{2}M_{\bar{0}} = M_{\bar{0}}e$$

$$\frac{1}{2} = e^{-kT}$$

$$e_{1} = -kT$$

If
$$\frac{dh}{dt} = -4 \text{ mm/s}$$

To lower by 100 mm at 4 majs takes 255

(11) A = 12 sin 0 (1+ cos 0) (1) , P = 0 (Lat Grump = d# = 12 cost (1+ coso)+ and xPO = 2 2x 4 at centre) 1. PÔX = 180 - 0 (1301 A x PO) = 12 Loro + coro - sin o] '. A = area & xoy + 2x area & xpo = 1 grob + roy 0 - (1- roy 9)] = 12 [2 cos 20 + cos 0 - 1] = 12 12 in 20 + 2x 2 + 3 in (180-0) $6 \text{ niz}^2 + 6 \text{ var } 6 \text{ niz}^2 + 6 \text{ var}$ = 1, 7146 (010+1) (III) For max area 20=0 2010 + 6010 - 1 = 0 0 = (1+ 6101)(1-61015) : coro = 1 or coro = -1. 0 = -60° i xpy = 60? since DXPY is isosceles, it must be equilateral.