Mathematics Extension 1

YEAR 12 TRIAL EXAMINATION
2008

Time allowed : Reading time — 5 minutes
Working time - 2 hours

DIRECTIONS TO CANDIDATES

e Attempt ALL questions.

e Write using blue or black pen.

¢ All necessary working should be shown in every question. Marks may be deducted for
careless or badly arranged work

* Board approved calculators may be used.
A table of standard integrals is provided at the back of this paper.

» Each question is to be started on a new page and you are to write your name
and teacher’s name on each page.

* The marks allocated for each question are indicated

Name : Class Teacher ’:

Q 1 2 3 4 5 6 7 | Total

Mak | /121 n2| n2| nz| nz2l| n2 | n2 /84
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Total marks — 84
Attempt Questions 1 — 7.
All questions are of equal value.

Start each question on a new page. Extra writing paper is available.

Question 1 (12 marks) Start a new page Marks
(8) Find [ —— dx

" x?43 2
(b) Ten people sit around a round table. How many arrangements are possible )

if three particular people want to sit together?

(c) Find to the nearest degree the size of the acute angle between the lines 2
x+2y—1=0
3x-2y+4=0
3x+5
dy If =
(d) <4 2

Express the inverse function as a function of x

(e) For the points A (-5, 2) and B(2, 0)

(i) Write down the coordinates of P, the point that divides AB 2
internally in the ratio k:1

(ii) IfPlieson xy=1,showthat %*-2k+11=0 2



Question 2 (12 marks) Start a new page Marks

(a) Given that a root of the equation e*+e™—-3=0 2

is close to 1, use one application of Newton’s Method of
Approximation to find a second approximation to this root (correct to 2
decimal places)

(b) Prove by Mathematical induction that 2> +1 is divisible by 3 for all

' non-negative integral values of n. 3
(¢) () Express sinx-cosx inthe form 4sin(x—a), with A>0Q 2
and O<ar<Z
2
(ii) Hence or otherwise determine liH]} ShY T eosx 1
4
(d)
Not to scale
In the diagram, AB is a diameter of the circle, centre O, and BC is
tangential to the circle at B. The line ADC intersects the circle at D. The
tangent to the circle at D intersects BC at E. Let ZEBD=«
(i) Copy the diagram onto your page
(ii) Prove that LEDC= % - s



Question 3 (12 marks) Start a new page

(a) Consider the function f{x) = cos™x

(i) Sketch the graph of y = f{x), stating clearly its range and domain.

(ii) Find the volume of the solid formed by rotating the arc of the
curve y = cos " x that is in the positive quadrant about the ¥ axis.

3

(b) Evaluate I_[(3 sinx) ~ 1] cosx dx using the substitution =(3sinx)- 1
1]

© @ If t=tan—9— , write down expressions for sin @ and cos 8

interms of ¢

(ii) Hence or otherwise solve the equation

\/gsin6’=1+cos¢9 inthedomain0 <8 <27

Marks



Question 4 (12 marks) Start a new page

(2)

(i) Show that the derivative of xtanx-—In(cosx)™ is xsec’x

(ii) Hence or otherwise evaluate | x sec® xdx

O L | Y

(b) A team of 6 girls is to be chosen from 10 girls.
(1) Find the number of ways that two particular girls, A and B, are both
~ included.

(ii) Find the number of ways that A and B are both excluded.

(iif). Find the probability that either A is included or B is included, but A
and B are not included together.

(¢)  Aparticle is released from rest at the origin on a straight line, when x
metres from the origin, its acceleration is given by

18

(——4-)7 mls?, forx <4.
X

(1) In which direction will the particle first move?

(i) Find the particle’s velocity when it reaches x = 2

Marks



Marks
Question 5 (12 marks) Start a new page

(a) A particle moves along in a straight line such that its displacement x metres
from an origin O at time ¢ seconds is given by:

x=4sin Z ¢
2
(i) Show that this motion is simple harmonic motion. 3
(i1) State the amplitude and the period of this motion. 2
(iii) Calculate the maximum speed attained by the particle. 3
(b)
Use long division to divide the polynomial f(x)=x*~-x*+x?—x+1 2

by the polynomial g(x)=x>-3.

Express your answer in the form  fix) = g(x).q(x) + r(x)

(c) Differentiate cos™ (e™*) with respect to x, putting your answer in 2
simplest form,



Question 6 (12 marks) Start a new page - Marks
@ 71

Not to scale
y=4sinx
3 o

w

y=3¢cosx
0 >
zT /2 x
The diagram shows the graphs of y =4 sinx and y = 3 cos x. Show that 3

the area of the shaded region in the diagram is 2 units” .

(b) A particle projected from ground level at an angle @ to the horizontal has its
position at time ¢ given by the coordinates

x=Vtcos , y=Vtsing — —;- gt (DO NOT PROVE THESE)

(i) Using these equations, find the maximum height reached 2
_interms of ¥, gand &.

(11) What is the speed of the object at its maximum height? _ 1

Question 6 continues on page 9



(c) Marks

Not to scale

A cone has a depth of 2 and

radius of g, as shown.

(i) Show that the volume of the cone is given by V= IIE z 1
(ii) Water is poured in at a rate of 10mm’ / s . Find the rate at which the 2
depth, / mm, is increasing when the depth of water in the cone
is 50 mm.

The cone is filled to a depth of 100mm and pouring then stops. A hole
is then opened at the vertex of the cone and water flows out at a rate of

ah>mm’ s
(iii) Find % in mm/s

(iv) Hence find how long it takes to empty the cone.

End of Question 6



Question 7 (12 marks) Start a new page

(@ The mass, M, ofa radioactive clement decreases at a raie proportional to

the mass,
ie. -C%J— = _— kM where k is a constant.

(i) Show that the function M =M ., where M|, is the initial mass,
provides such a rafe.
(i) The “half-life” period of an element is the time taken for any given

mass to be reduced by half. If the half-life period is 7,
In2

rove that =
P T

Question 7 continues on page 11

-10-

Marks



(b) Marks
P

Not to scale

|

LY
_....__.._......a-.-..;}......-.....

M

In the diagram above, O is the centre of a circle of constant radius r, A variable
chord XY subtends an angle 28 at the centre O. Let P be the point on the major
arc XY so that A XPY is isosceles with XP = ¥P. Let PO produced meet XY at M
so that PM is the perpendicular bisector of the chord X7.

(i) Prove that the area, A, of AXPY is given by: 3

A=1*sin@(l + cos 6)
. dd _ > 2
(i) Show that Py =r°(2cos* 8+ cos@ - 1) )

(iii) Show that AXPY has maximum area when it is an equilateral 3

triangle. You may assume it is a maximum ~ you are NOT
2

required to test ——
1 40

End of paper
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Standard Integr*als

1 .
x" dx = . on#-1; x#£0,ifn<0
n+1
(1
—dx =hx, x>0
X
ax 1 ax
e dx ==e%*, az0
a
[ 1
cosaxdx =-Esinax, a#0
[ 1 '
sinaxdx =-Ecosax, a#0
r 2 1
sec“axdx =Etanax, az0

[ 1
secax tanaxdx = Esecax, a#0

~

R S
Ja* - x*

i 1 .
—dx =1n(x+ xz—az), x>a>0
I

= 1n(x+ \/xz + az)

[ 1
——dx
J \}x2 + a2

NOTE: Inx=log,x, x>0
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